NASA TECHNICAL MEMORANDUM 100599

STRESS-INTENSITY FACTORS FOR SMALL
SURFACE AND CORNER CRACKS IN PLATES

{NASA-TM-100599) STRESS-INTENSITY FACTORS N88-22445
FOR SMALL SURFACE AND CORNER CRACKS 1IN
PLATES [NASA) 45 p CSCL 20K

Onclas

G3/39 0142326

I. S. Raju, S. N. Atluri, and J. C. Newman, Jr.

APRIL 1988

NNASN

Nationa! Aeronautics and
Space Administration

Langiey Research Center
Hampton, Virginia 23665



STRESS-INTENSITY FACTORS FOR SMALIL SURFACE AND CORNER CRACKS
IN PLATES
I. S. Raju, S. N. Atluri, and J. C. Newman, Jr.

NASA Langley Research center
Hampton , Va 23665-5225

ABSTRACT

Three-dimensional finite-element and finite-element-alternating
methods were used to obtain the stress-intensity factors for small surface
and corner cracked platés subjected to remote tension and bending loads.
The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the
crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The
performance of the finite-element alternating method was studied on these
crack configurations. A study of the computational effort involved in the
finite-element alternating method showed that several crack configurations
could be analyzed with a single rectangular mesh idealization, whereas the
conventional finite-element method requires a different mesh for each
configuration. The stress-intensity factors obtained with the finite-
element-alternating method agreed well (within 5 percent) with those
calculated from the finite-element method with singularity elements.

The stress-intensity factors calculated from the empirical equations
proposed by Newman and Raju were generally within 5 percent of those
calculated by the finite-element method. The stress-intensity factors
given herein should be useful in predicting crack-growth rates and fracture

strengths of surface- and corner-cracked components.
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INTRODUCTION

Surface and corner cracks may occur in many structural components.
These cracks initiate near regions of stress concentrations and may cause
premature failure of aircraft landing gears, spars, stiffeners, and other
components [1l]. Accurate stress-intensity factor solutions for these
components are needed for reliable prediction of crack-growth rates and
fracture strengths.

Most of the life of these cracked components is spent when the cracks
are small. Also, many applications of damage tolerance or durability
analyses require the computation of stress-intensity factors for small
cracks. Previous analyses of surface- and corner-crack configurations,
using three-dimensional finite-element analyses [2-4], boundary-integral
equation methods [5], and alternating methods [6-8] have considered crack-
depth-to-plate-thickness ratios greater than or equal to 0.2. Engineering
judgment or extrapolations were used to estimate stress-intensity'factors
for small sucface and corner cracks [9,10]. Therefore, more analyses are
needed to verify these extrapolations for small cracks. The purpose of this
paper is to present stress-intensity factors for a wide range of semi-
elliptical surface cracks and quarter-elliptical corner cracks in plates
with crack-depth-to-plate-thickness ratios less than 0.2 and obtain

asymptotic values as crack-depth-to-plate thickness ratios approach zero.



Two popular methods to obtain the stress-intensity factors for the
surface- and corner-crack configurations are the finite-element method with
singularity elements [2-4] and the finite-element-alternating method [11-
13}. In the finite-element method, large number of elements are needed
with customized modeling near the crack front with singularity elements.
Once such models are developed, accurate stress-intensity factors can be
obtained [2-4]. In contrast, the finite-element-alternating method does not
need customized modeling near the crack front. This is because the
uncracked solid is analyzed by the finite-element part of the method. The
second objective of this paper is to study various types of modeling that
could be used and to study the computational efficiency of the method. The
stress-intensity factors obtained with the finite-element-alternating
method were compared with those from the finite-element method with
singularity elements for surface- and corner-crack configurations. The

stress-intensity factors obtained by these methods were also compared with
values calculated from empirical equations for surface- and corner-cracked

plates with crack-depth-to-plate-thickness ratios less than 0.2.

ANALYSIS
Two types of crack configurations: a surface- and corner-cracked
plate, as shown in Figure 1, were analyzed: The three-dimensional finite-
element method and finite-element-alternating method were used to pbtain the
mode I stress-intensity factors. In these analyses, Poisson’s ratio ( v )

was assumed to be 0.3.



Loading
Two types of loading were applied to the crack configurations: remote
uniform tension and remote out-of-plane bending (bending about the x-axis).
The remote uniform tensile stress is S¢ in the z-direction and the remote
outer-fiber bending stress is S;. The bending stress Sp is the outer fiber
stress calculated at the origin ( x = y = z = 0 in Fig. 1) without the crack

present.

Stress-Intensity Factor
The tensile and bending loads cause only mode I deformations. The
mode I stress-intensity factor K for any point along the crack front was

taken to be
K= 83 ( 7a/Q )1/2. F( a/t, a/c, ¢) (1)

where the subscript i denotes tension load ( i = t ) or bending load ( i = b
), a 1is the crack depth, ¢ is the surface length, t is the thickness of the
plate, ¢ is the parametric angle of the ellipse, and Q is éhe shape factor
of the ellipse (which is equal to the square of the complete elliptic
integral of the second kind). The half length of the bar, h, and the width
, b, ( see Fig. 1) were chosen large enough ( h/b >2 and b/c > 5 ) to have
negligible effects on the stres;-intensity factors. Values of F, the
boundary-correction factor, were calculated along the crack front for
various crack shapes (a/c = 0.2 to 1 ) with a/t values of 0.05, 0.1, and
0.2. The crack dimensions and the parametric angle are defined in Figures 1

and 2.



Three-Dimensional Finite-Element Method

Figure 3 shows a typical finite-element model for a surface or corner
crack in a rectangular plate. The same finite-element model was used to
obtain the stress-intensity factors for the surface- and corner-crack
configurations. For the surface-crack configuration, symmetric boundary
conditions were imposed on the z = 0 and xl- 0 planes. Whereas, for the
corner-crack configuration, symmetric bqundary conditions were imposed only
on the z = 0 plane. The finite-element models employed six-noded,
pentahedron, singularity elements at the crack front and eight-noded,
hexahedral elements elsewhere. Stress-intensity factors were evaluated
using the nodal-force method [2]. Details of the formulation of these types
of elements and development of the finite-element models are given in

references 2 through 4 and are not repeated here.

Finite-Element-Alternating Method
This method is based on the Schwartz-Neumann alternating technique.

The alternating method uses two basic solutions of elasticity and alternates

between these two solutions to satisfy the required boundary conditions of
the cracked body [6-8]. One of the solutions is for the stresses in an
uncracked finite solid, and the other is for the stresses in an infinite
solid with a crack subjected to arbitrary normal and shear tractions. The
solution for an uncracked body may be obtained in several ways, such as the
finite- element method or the boundary-element method. In this paper, the

three-dimensional finite-element method was used.



The procedure that is followed in the alternating method is
summarized in the flow chart in Figure 4 and is briefly explained here for
mode-I problems. First, solve the uncracked solid subjected to the given
external loading using the three-dimensional finite-element method (Step 1
in Fig.4 ). The finite-element solution gives the stresses everywhere in
the solid including the region over which the crack is present (Step 2 ).
The normal stresses acting on the region of the crack need to be erased to
satisfy the crack-boundary conditions. The opposite of the stresses
calculated in Step 2 are fit éo an nth degree polynomial in terms of x- and
z-coordinates ( Step 4 ). Due to the polynomial stress distributions
obtained in Step 4, calculate the stress-intensity factor [11] for the
current iteration ( Step 5). Use the analytical solution of an embedded
elliptic crack in a infinite solid subjected to the polynomial normal
traction [11] to obtain the normal and tangential stresses on all the
external surfaces of the solid (Step 6). The opposite of these stresses on
the external surfaces obtained in Step 6 are then considered as the
externally prescribed stresses on the uncracked solid ( Step 7). Again,
solve the uncracked solid problem due to the surface tractions calculated in
Step 7. This is the start of the next iteration. Continue this iteration
process until the normal stresses in the region of the crack are negligibly
small or lower than a prescribed tolerance level. The stress-intensity
factors in the converged solution are gimply the sum of the stress-

intensity factors, that are computed in Step 5, from all iterationms.

The key element in the alternating method is, obviously, the

analytical solution for an infinite solid with an embedded elliptical crack



subjected to arbitrary normal and shear tractions. Such a solution was
first obtained by Shah and Kobayashi [14] for tractions normal to the crack
surface. However, this solution was limited to a third-degree polynomial
function in each of the Cartesian coordinates describing the ellipse.
Vijayakumar and Atluri [15] overcame this limitation and obtained a general
solution of arbitrary polynomial order. Nishioka and Atluri [11-13]
improved and implemented this general solution in a finite-element-
alternating method and analyzed surface- and corner-cracked plates. The
details of the method are well documented in references 11 through 13 but

they are briefly described herein.

In the 3-D finite-element solution, twenty-noded isoparametric
parabolic elements were used (o model the uncracked solid. Two types of
idealizations were used. In the first type, the idealization was such that
the elements on the z = 0 plane conform to the shape of the crack in the
cracked solid ( see Fig. 5(a) ). Although the finite-element solution is
for the uncracked body, such an idealization is convenient to perform the
polynomial fit using the finite-element stresses from the elements that are
contained in the region of the crack. The 3-D mesh is then generated by
simply translating in the z- direction the mesh on the z = 0 plane. These
models will be referred to as the mapped models. A typical mapped model is
shown in Figure 5(a). In the second type, simple rectangular idealizations
were used to model the solid. These models are referred to as the

rectangular models. A typical rectangular model is shown in Figure 5(b).

The alternating method requires a fit to the stresses, obtained from



the finite-element solution (of the uncracked body), at the crack location (
Step 4). These stresses are the residual pressures that need to be erased.
For corner cracks, the residual crack-face pressure distribution, aRz, was
assumed to be a complete fifth-degree polynomial in x and y with 21 terms as

shown in the Pascal’s triangle below.
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For surface cracks, the residual pressure aRz had only 12 terms bécause of
symmetry about the y-axis. These twelve terms were obtained by neglecting
the terms involving odd powers of x in the fifth-degree polynomial shown in
the Pascal’s triangle. For mapped models, the residual pressure was fit
over the complete region of the crack. For rectangular models, the residual
pressure was fit over a rectangular region.bounded by the semi-minor and

semi-major axes of the crack ( see shaded region in Fig. 6 ).

Because the continuum solution corresponds to that of an embedded
elliptic crack in an infinite solid, it is necessary to define the residual
stresses not only on the region of the crack but also on the "fictitious"
portion of the crack which lies outside of the finite solid. Nishioka and
Atluri [11-13] suggested the residual-pressure distribution, through

numerical experimentation, to be



oR, (0,y) forx=0,y=20

R, = oR, (0,0) forx=0, y=<0.
aRz (x,0) for x 20, y<0
for corner cracks, and
aRz - aRz (x,0) for x 20, y=<0

for surface cracks.

The stresses computed at the nodal points of a 20-node element in a
finite-element analysis can be be inaccurate [16]. Therefore, the stresses
were evaluated at the 2x2x2 Gaussian points of an element and then were

extrapolated to the element nodes as suggested by Hinton et al [16,17].

RESULTS AND DISCUSSION
In this section, the convergence of the finite-element-alternating
method is studied. Then, the stress-intensity factors obtained from this
method are compared to those calculated by the three-dimensional finite-
element method. Next, the stress-intensity factors for various crack
configurations are compared to those calculated from empirical stress-

intensity factor equations.

Convergence of the Finite-Element-Alternating Method
To study the convergence of the finite-element-alternating method, an
oblong corner crack subjected to remote uniform tension with an a/c ratio of

0.2 was considered. The corner-crack configuration was chosen because the



configuration is more severe than the surface-crack configuration because of
the existence of an additional free surface ( x = O plane). The a/c ratio
of 0.2 was chosen because larger areas of the external surfaces need to be

made stress free.

Figure 7(a) shows a typical mapped model on the é = 0 plane for a
shallow corner crack ( a/t = 0.2 ) with 20-noded isoparametric elements.
This coarse model had 982 nodes and 162 elements and uses 4 elements to
model region corresponding to the crack face. Two other models, medium and
fine, using 8- and 12-elements to model the region corresponding to the
crack face, see Figure 7(b) and 7(c), respectively. All three models had 9
unequal layers of elements in the height (z) direction. For all three
models, the stress-intensity factors converged to within one-percent
accuracy in 5 iterations. The average residual pressure on the crack face
normalized by the remote tension stress showed excellent convergence, as

shown in Table 1.

Figure 8 presents the normalized stress-intensity factors all along
the crack front for the three models. The stress-intensity factors from the
three models agreed well with one another and indicated that even coarse

models give accurate results.

Figure 9 shows the three rectangular models (on the z = 0 plane ) that
were used in the analyses: coarse, medium and fine. The three models were
developed such that the coarse model is a subset of the medium and the

medium model is a subset of the fine model. All models had the same
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refinement in the height (z) direction. The coarse and medium models had
only 4 elements, while the fine model had 9 elements in the crack region.
The coarse model had only 5 elements in the y-direction while the medium
model had 7 elements in the y-direction. In both cases the x-refinement was
held constant. The fine mesh, on the other hand, had 9 elements in the y-
direction and 7-elements in the x-direction. Therefore, the fine model had
better refinement near the crack front. The plate was idealized with 175,
245, and 441 elements for the coarse, medium and fine models, respectively.
For these models, the stress-intensity factors converged to within one-
percent accuracy in 4 iterations. The average residual pressure on the
crack face normalized by the remote uniform tension stress, again, showed

excellent convergence, as shown in the Table 2.

Figure 10 presents the normalized stress-intensity factors obtained
from the three rectangular models for a slightly different corner-crack
configuration ( a/c = 0.2 and a/t = 0.1 ) than used for the mapped models.
Small differences in stress-intensity factors were found between the medium
and fine models ( about 0.5 pefcent). However, for larger values of ¢
considerable differences were observed between the coarse and medium models.
This behavior was caused by inadequate refinement in the y-direction for the
coarse model. These results suggest that accurate stress-intensity factors
can be obtained from rectangular models with as little as 4 elements in the
region of the crack, provided adequate réfinement is used in modeling the

free surfaces.

Comparison of Stress-intensity Factors
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Figures 11 and 12 comp :« the stress-intensity factors for shallow
corner cracks (a/c = 0.2) ob -ined with the finite-element method and the
finite-element-alternating method for a/t = 0.2 and 0.1, respectively. The
results from the mapped and rectangular (medium) models are shown in Figure
11, while the results from a rectangular (medium) model are shown in Figure
12. The results shown from both analyses in Figure 11 agreed well. The
maximum difference was near ¢ = 0 and was about 4 percent. ( Herein,
"percent difference" is defined as the difference between the two solutions
normalized by the largest value for that configuration. ) Figure 12 shows
that the results from the rectangular model agreed well with those obtained
from the finite-element method, except near ¢ = 0. The maximum difference,

however, was about 6 percent.

Figures 13 and 14 present comparisons of stress-intensity factors for
a nearly semi-circular surface crack and nearly quarter-circular corner
crack, respectively, obtained with the finite-element method and the finite-
element-alternating method. Note that the finite-element-alternating method
cannot be used for cracks with an a/c ratio of unity because the elliptic
functions have indefinite forms. From numerical experimentation the
limiting values of the a/c ratio appear to be 0.98 for embedded cracks,
0.92 for surface cracks, and 0.85 for corner cracks. Thus, an a/c <value
of 0.85 was chosen for both crack configurations. These figures show
reasonable agreement between the two methods for both the surface- and
corner-crack configurations. The largest discrepancy occurred where the

crack front intersects a free surface (about 5 percent).
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Computational Effort of the Finite-Element-Alternating Method

A study of the computational time for the alternating method indicated
that assembling and decomposing the finite-element stiffness matrix was the
most dominant computational effort. Each iteration was approximately one
percent of the time required to assemble and decompose the stiffness
matrix. For the configurations studied, convergence to less than one
percent error bound in the stress-intensity factors was achieved in 4 or 5
iterations. The results shown in Figure 12 suggest that rectangular models
provide accurate solutions and these models are easier to generate than the
mapped models. The rectangular models give accurate results provided that
adequate refinement is made along each coordinate axis. Most importantly, a
single rectangular fine mesh can be used to analyze a wide range of crack
shapes and sizes without repeated assembly and decomposition of the
stiffness matrix. For example, the computational time required to analyze
three crack shapes (a/c) and three crack sizes (a/t), or 9 crack
configurations, using the finite-element-alternating method was 630 CPU
seconds (VPS-32 Computer). The conventional finite-element method requires

nine separate computer runs. The computational time for one run was about
' 400 CPU seconds (VPS-32 Computer). Therefore, 3600 CPU seconds are required

for the finite-element method.

Stress-Intensity Factors for Small Cracks
Stress-intensity factor equations [9,10] have Been developed by using
the stress-intensity factors obtained from the finite-element method,
engineering judgement, and extrapolations. To evaluate the equations for

a/t < 0.2, therefore, it is logical that the values from the equation be
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compared with those from the finite-element method. Furthermore, the

differences between the results from the finite-element-alternating method

and the finite-element method with singularity elements were about 3 percent

for most of the crack front. Therefore, stress-intensity factors were
calculated for various crack shapes ( a/c = 0.2 to 1) with a/t ratios
ranging from 0.05 to 0.2 by using the finite-element method. A typical
stress-intensity factor distribution for a corner crack with a/c = 0.4,
subjected to remote uniform tension loading, for various a/t ratios are
shown in Figure 15. For remote tensile loading and all a/c ratios
considered, smaller a/t values always gave slightly lower stress-intensity
factors all along the crack front. However, the difference in stress-
intensity factors from an a/t value of 0.2 to 0.05 was less than 3 pércent.
For remote bending loading and all a/c ratios, smaller values of a/t gave

higher stress-intensity factors all along the crack front. This is

expected because the crack experiences a more uniform stress gradient as a/t

approaches zero. At a/t = 0, the bending stress-intensity correction
factors (F) are exactly equal to those due to remote tension. At a/t =
0.05, the maximum differences between the stress-intensity correctioﬂ
factors at the deepest point of the crack due to remote tension and remote
bending loading are about 10 percent.

The present results were also compared to the empirical stress-
intensity factor equations proposed by Newman and Raju [9,10]. As

previously mentioned, the empirical equations were obtained by a curve

fitting procedure to the finite-element results in the range 0.2 < a/t < 0.8

for various crack shapes. 1In developing the empirical equations, some

engineering judgment and extrapolations were used for the limiting solution
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for a/t = 0. The present finite-element results are compared with
calculations from the empirical equations in Figures 16 through 19 for
surface or corner cracks. For surface cracks, the comparisons were made at
the maximum depth point ( 2¢/x = 1 ) and near the free surface ( 2¢4/x =
0.125 ) for the surface crack. At the free surface ( 2¢/x = 0 ), the
finite-element results are influenced by the boundary-layer effect and the
results are mesh dependent [2]. For corner cracks, the comparisons are also
made near the two free surfaces ( 2¢/n = 0.125 and 0.875 ). The results
from the empirical equations ( solid curves ) are generally within about 5
percent of the finite-element results for the range of a/c ratios

considered.

From the finite element results, asymptotic stress-intensity
correction values at a/t = 0 Qere computed by fitting a quadratic equation
in terms of a/t to the results for a/t values of 0.2, 0.1, 0.05. These
asymptotic values ( average of the tension and bending loads) are shown in
Table 3. These values are also compared with those obtained from the

empirical equations. The asymptotic values from the empirical equation and

the extrapolated finite-element results at a/t = 0 agreed well ( within 3
percent ). Thus, the empirical equations have an accurate limit as a/t

approaches zero.

CONCLUDING REMARKS
Stress-intensity factors for shallow surface and corner cracks in
rectangular plates were obtained using the three-dimensional finite-element

and finite-element-alternating methods. The plates were subjected to remote
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tension and remote out-of-plane bending loads. A wide range of crack shapes
were considered (a/c = 0.2 to 1 ). The crack-depth-to-plate-thickness (a/t)

ratios ranged from 0.05 to 0.2.

The performance of the finite-element-alternating method was studied
by considering two types of models: mapped and rectangular models. The
mapped models used idealizations that conform to the shape of the crack
while the rectangular models used a rectangula» jidealization throughout the
solid. The stress-intensity factors obtained by either model showed
excellent convergence and showed that about 4 to 8 elements are sufficient
to model the crack region. The stress-intensity factors obtained from the
finite- element-alternating method agreed well with those obtained the
finite-element method with singularity elements ( maximum difference was
about 5 percent.) The study of the computational effort involved in the
finite-element-alternating method showed that a single rectangular
idealization could be used to analyze several crack configurations. The
method produced accufate stress-intensity factors at a lower cost compared

to the conventional finite-element method.

For remote tensile loading and all crack shapes (crack depth-to-
surface-length ratios, a/c ) considered, lower values of the crack-depth-to-
plate-thickness (a/t) ratios gave lower stress-intensity factors for
surface- and corner-cracked plates. However, the largest difference between
the stress-intensity factors for a/t values ranging from 0.05 to 0.2 was
only about 5 percent. The results at an a/t ratio of 0.05 were very nearly

equal to the asymptotic values at a/t = 0. For remote bending loading and
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all crack shapes (a/c), lower values of a/t gave higher stress-intensity
factors all along the crack front. This was expected because the crack
experiences a more uniform stre:s gradient as a/t approaches zero. The
asymptotic limits of the stress-intensity factors ( as a/t approaches zero )
given the empirical equations proposed by Newman and Raju were within 3

percent of the limits obtained by the finite-element method.

The stress-intensity factors given in this paper should be useful in
predicting crack-growth rates and fracture strengths, in designing
structural components, and in establishing inspection intervals for surface-

and corner-cracked components.
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mapped models.

Table 1.- Average normalized residual pressure on the crack face from

Iteration Finite-element model

Number Coarse Medium Fine
1 0.975 0.975 0.975
2 0.215 0.201 0.199
3 0.034 0.044 0.043
4 0.013 0.017 0.017
5 0.002 0.003 0.003

Table 2.- Average normalized residual pressure on the crack face from the

rectangular models.

Iteration Finite-element model

Number Coarse Medium Fine
1 1.273 1.273 1.273
2 0.144 0.171 0.171
3 0.020 0.027 0.027
4 0.006 0.007 0.008

20



Table. 3: Comparison of asymptotic limits of the normalized stress-

intensity factors, F, as

a/t approaches zero, obtained by the

finite-element analysis (average value of tension and bending

loading) and the empirical equation.

K =5; (ra/Ql/2 F

Surface Cracks

2 ¢/x = 0.125 2 ¢/x=1.0
a/c
Finite-element Empirical Finite-element Empirical
Analysis Equation Analysis Equation
0.2 0.621 0.623 1.094 1.112
0.4 0.764 0.771 1.073 1.094
0.6 0.896 0.902 1.055 1.076
1.0 1.119 1.107 1.022 1.040
Corner Cracks
2 ¢/ = 0.125 2 ¢/x = 0.875
0.2 0.618 0.588 1.095 1.108
0.4 0.752 0.736 1.085 1.104
0.6 0.886 0.871 1.090 1.100
1.0 1.104 1.094 1.104 1.094
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START
{

STEP 1:

SOLVE THE UNCRACKED BODY SUBJECTED

TO THE GIVEN EXTERNAL LOADING BY
?Slﬂ? THE FINITE ELEMENT METHOD
FEM

V

STEP 2

USE THE FE SOLUTION TO COMPUTE THE
STRESSES ON THE LOCATION OF THE
CRACK IN THE UNCRACKED BODY

Y

) STEP 3

CRACK FACE STRESSES ARE NEGLIGIBLE YES

Y NO

SOLUTION HAS
CONVERGED.
SUM UP THE
STRESS-INTEN-
SITY FACTORS
FOR ALL
ITERATIONS

STEP 4:

USE THE OPPOSITE OF STRESSES CALCULATED
IN STEP 2 AND FIT A POLYNOMIAL FUNCTION
FOR THESE STRESSES

Y

STEP 5:

EVALUATE THE STRESS INTENSITY FACTORS
FOR THE CURRENT ITERATION

1

o

STEP

USING THE ANALYTICAL SOLUTION CALCULATE
THE STRESSES ON EXTERNAL SURFACES OF THE
BODY RUE TO THE STRESSES OBTAINED IN
STEP §.

Y

STEP 7

REVERSE THE STRESSES ON THE EXTERNAL SURFACES
OBTAINED IN STEP 6 AND CONSIDER THESE AS
EXTERNAL LOADS. CALCULATE THE EQUIVALENT
NODAL LOADS AND USE THESE AS APPLIED

LOADING FOR THE UNCRACKED BODY

y

Figure 4.-

Flow chart for the finite-element-alternating method.
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(a) Mapped model.

—_—

(9]
Y

(b) Rectangular model.

Figure 6.- Crack-surface area used in residual pressure (aZR) fit.
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(a) Coarse mesh.

/

=

(b) Medium mesh.

/

=

(¢c) Fine mesh.

Figure 7.- Mapped models used in finite-element-alternating method.
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(a) Coarse mesh,

(b) Medium mesh.

(c) Fine mesh,

Figure 9.- Rectangular models used in the finite-element-alternating
method.
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